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1. Introduction 

The application of the extended (unrestricted and spin-projected) Hartree-Fock 
method [ 1 ] to large molecular systems is hindered by difficulties resulting from the 
spin-projection. The aim of this paper is to outline the possibility of simplifying these 
problems by means of the method of moments. As in spite of the significant simplification 
some questions are open, (e.g. associated with the best algorithm for finding the best 
values of the variational parameters) our discussion will be confined to the basic 
principles. 

2. The Simplification of the Extended Hartree-Fock Equations 

Let H be the (electronic) Hamiltonian operator of a molecular system. We assume that 
H commutes with the square and the z-component of the total spin of the system. The 
extended Hartree-Fock wave function can be written as 

Nc~ NI3 
UEHF : A P  I~ u(rl, al)a(si) ~[ v(rNa + j ,  bj)[3(SN~ + j) .  (1) 

I = 1  J = l  

Here A is the antisymmetrizer, P the operator projecting on to the required spin state, 
the u's and v's denote orbitals involving sets of variational parameters a z and b j ,  a and 
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/3 are the usual spin functions; Nu and N# denote the number of electrons with a- and 
/3-spin, respectively. 

We start with observing that in most systems of practical interest the great majority of 
the electrons in the restricted Hartree-Fock approximation belong to double-occupied 
one-electron states. In order to avoid heavy notation we shall assume that all the 
electrons are such. This implies N~ = N# --- N and the system is in a singlet state. 

In order to determine the values of the parameters at and bj by the method of moments 
[2] 1 a weight function generator W has to be chosen which involves at least as many 
variational parameters as UEHF. Taking into account that presumably the majority of 
the parameters ax and bj are linear, a tempting form of the weight function generator is 

N 
W = WRH F = A  I-[  [CxaU(rI, a~) + ci~v(rz, bz)] a(s~r) x 

1=1 
N 
I-[ [CJau(rN +J, ay) + CjbV(rN + J, bj)]3(SN +j ), (2) 

J = l  

where the o's denote additional variational parameters. According to V, in the simplest 
formulatior of the method of moments (see Eq. (23) of V) the variational parameters 
can be determined from the requirement 

( WRHFIH[ UEHF)/( WRHF [ UEHF) = EM = stationary, (3) 

(where stationary means minimum for the ground state) subject to the constraint 

1 - [(WRHF[ UEHF)2/((WRHFI WRHF)(UEHFI UEHF))] 1/2N ,~ 1, (4) 

which qualitatively means WRHF ~ UEHF. This must be understood as follows: If (3) 
itself does not guarantee (4), the parameters in WRIer must not be freely varied but 
subject to conditions ensuring (4). For further details and precautions we refer to V. 

In any case it is necessary (and probably sufficient) to use (4) for the determination of 
the parameters c in WRHF. If we require (without loss of generality) the pairing-theorem- 
like orthonormalization 

(u(r, ai) lu(r, as)) = (v(r, bi) tv(r, b j))= 6IJ, 

(u(r, ai)lv(r, b r))=Xx6ij  ( I , J =  1 . . . . .  N; 0 < X i <  1) (5) 

it can easily be verified that [ . . . ]  in (4) is maximized by Cla = csb giving 

[ . . . ] 1 / 2 N = ( I = 1  ]~  (l + XI)/2) 1/N' 

i.e. the geometrical mean of the (1 + Xi)/2's. 

Now, it follows from the theory of the restricted Hartree-Fock method that PWRHF = 
WRrfF and, of course, A WRHV = WRHF- This means that in the integrals entering (3) 
the annoying operators A and P in the definition of UgH F call simply be disregarded: 
WRr~; is a single determinant and UEHF becomes a single product. 

1 The 5th paper of [2] will be referred to as V. 
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It must be emphasized that this procedure is not some hidden form o f  the unrestricted 
(but not spin-projected) Hartree-Fock method. The weight function generator WRHF 
automatically acts as a projector. 

The extension0f  these ideas to systems in a more complicated spin state is, in principle, 
straightforward. We must apply an "open-shell restricted Hartree-Fock" weight function 
generator and keep, if necessary, a drastically simplified spin projector acting only on the 
"open-shell" terms of  the weight function generator. 

3. Applications 

The method outlined in the previous section has been tested by the ground state of  the 
helium atom and the negative hydrogen ion. Wave functions 

UEH F = A P  exp( -a r  1) ~(s 1) exp ( -  br 2)(3(s2) (6) 

have been applied (disregardingA and P in (3)). Here a and b denote variational para- 
meters; r 1 and r 2 are the distances of  the electrons 1 and 2 from the fixed nucleus, 
respectively. The weight function generator then becomes 

WRH F = A [a 3/2 exp ( - a r l )  + b 3/2 e x p ( - b r l )  ] t2(s1) 

[a 3/2 exp(--ar2)+ b 3/2 exp(-br2)][J(s2). (7) 

The results are listed in Table 1. They include the energies and wave functions calculated 
by the method of  energy variation. The superscriptsM and E refer to results obtained 
by the method of  moments and the method of  energy variation, respectively. The sub- 
script RHF refers to the restricted Hartree-Fock results, i.e. a = b in (6). The overlap 
integrals listed in Table 1 are 

(U~HF[UEHF)/((UMHF M E E 1/2 $1 M = [ U~HF)(UEHF[ U~HF) ) , (8) 

Table 1. Results of the calculations on the 
ground states of the helium atom and the 
negative hydrogen ion (atomic units). An 
explanation is given in the text 

Helium Atom 

EMHF = -2.87909 
L~EHF = -2.87566 
EEHF = -2.84766 

EEXAC T = -2.90372 
$1 = 0.99590 
$2 = 0.93104 

a=1.080 b=2.291 
a=1.186 b=2.186 
a=1.687 b=1.687 

Negative Hydrogen Ion 

EMHF = -0.51843 
EEHF = --0.51327 
EEHF = -0.47250 

EEXAC T = -0.52775 
$1 = 0.96728 
S 2 = 0.69583 

a = 0.207 b = 1.107 
a = 0.278 b = 1.045 
a=0.687 b=0.687 
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(9) 

4. Discussion 

The results presented in Table 1 indicate that the extended Hartree-Fock wave functions 
obtained by the method of moments may be reasonable approximations of those obtained 
by the method of energy variation. In general, it is probable that the method of moments 
will give stronger correlation effects in the wave function than the method of energy 
variation, as the weight function generator underestimates the correlation. In  larger 
systems the effect of the other electrons is likely to hinder this "over-correlation". In 
any case it is probable that the method of moments can at least yield starting wave 
functions to a method-of-energy-variation treatment better than the restricted Hartree- 
Fock ones. 
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